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The problem of shock wave propagation in an elastoplastic medium with transl- 

ational hardening is investigated [ 13. 
A closed system of equations in jumps p] has not been obtained successfully 

for many rheological materials. It is shown in [3] that in such cases a system of 
equations in discontinuities can be closed by using the analysis of the shock layer 
structure. This results in the need for a joint solution of the problems of shock 

wave propagation and structure. 
The change in the discontinuous qualities within the transition layer in the 

problem of wave structure is described by a system of ordinary differential equa- 
tions. Conditions for the existence and uniqueness of transient solutions of such 

systems have been studied sufficiently (*) and are assumed satisfied. 

An exact solution of the combined problems of propagation and structure is 

difficult, hence as a simplification it is proposed to consider the linear depend- 
ence between “discontinuous” functions within the transition layer. On the basis 

of this method, a closed system of equations in jumps is successfully obtained 

below for an elastoplastic medium and the shock wave properties are investigated. 

1. The material is assumed plastically incompressible, and its rheological model is 
pictured in Fig. 1. The dependence between the stresses Sijt, Sij2 and strains eij’, eij2 

t/-+J+ 

in the first and second elasticity elements is written, 
respectively, in the form of Hooke’s law 

tcjl = ?&jij + 2+1eii1, sij*2 = 2pse~j*Y) 

Here hr., pl and ps are elastic constants, and the 
asterisk superscript denotes the deviator part of thz 

Fig. 1. tensor. The stresses SijP and the strain rate “jiP in 

the plasticity element are connected by the associa- 
ted flow law [l] 

P* 
eij 

ti = -Ji- sz*, ef& = 0 (1.2) 

The stresses ~j* satisfy the Mises plasticity condition 

s;*s;* = 2k= (k is the yield point) (1.3) 

Since the elements P and Es are connected in parallel, the strains in these elements 

(*) G, Ia. Liubarskii, Dissertation, Moscow, 1965. 
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coincide 

eii ’ = etj~ (1.4) 

The strain efj and strain rate of the medium aij are composed of strains and strain rates 
in the elements P and El,i,e., 

eij I: f4jP + 9 jlc 8i j = eij’ + E{jl W) 

The stress in the medium CIQ coincides with the stress in the element El which equals 
the sum of the stresses in the elements P and Es 

Qij = Sij’ = Slj’ + Sijp 
(4.6) 

The joint solution of the system of equations (1. X), (1. ‘2). (1.4) - (1.6) in (Ttj, eij and 
ail results in the equations 

aa, j* 
- = 4 fWWij* - I%%*) $ + 2P1eij* at (0 

%k = 6% + 2%) ekk, 3% = PI t_ Ill 

The plasticity condition results in the expression 

The particle displacements ui,velocity u+, small strain tensor cii and strain rate tensor 

eij are connected by the relations 

Vi = 8Ui / dty eij = l/z (ui, j + uj, i) V.9) 

Eij = ae{f / at = ‘12 (Vi, j + Vj, i) 

Let a surface of strong discontinuity 2 be propagated with velocity G in a continuum. 

The structure of the shock wave transition layer can be described by introducing addit- 

ional viscous properties of the continuum which do not appear outside the shock layer. 
We then obtain the governing equations within the shock layer from (1.7) and (1.8) by 

replacing oil by the difference ~$1 - d;j,where dij is the stress tensor due to the add- 
itional viscous properties. However, at the level of the linear approximation of the de- 

pendence between the discontinuous shock quantities, the stresses dij introduce no con- 
tribution into the equation for the discontinuities 133. Hence, within the transition layer 
the governing equations (1.7) and (1.8) wilI be utilized. 

If f and 9 are two discontinuous functions, then the linear dependence 

between them will be utilized within the transition layer. The plus or minus superscript 
means that the value of the discontinuous quantity is taken ahead of or behind the shock 

front, respectively. 
The dependence (1.10) permits writing (1, ‘7) in jumps. To do this, let us integrate 

it across the transition layer from the rear to the forward shock front 
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Here z, is the normal coordinate to the transition layer, x,,+ and z,- are coordinates 
of the forward and rear shock fronts, respectively. Taking account of the properties of 

the delta-time-derivative, the left side of (1.11) is integrated to higher order accuracy. 
The right side can also be integrated if (1.10) is utilized. After the mentioned manipu- 
lations, we obtain the desired relationship in discontinuities 

[%*I - 2111 [%*I = 2 191 {2wze*~ - 21105*ij - plpLa [qj*l + 
+ PO[%~*l~+ -*- (1.12) 

The three dots in (1.12) denote small terms containing jumps of higher degree than the 

second. 
From the second equation in (1.7) and the plasticity condition (1.8) we find 

[~Ls] = (3& + 2h) lekkl (1.13) 

The kinematic and dynamic conditions of compatibility of the discontinuities 

[cijl vj = - p+G [vi], 1~1, j] = OiYj, [vi] = - Gmi (1.15) 

close the system of equations (1.12) - (1.14) where Vi is the normal to the surface of 
discontinuities. 

The auxiliary relationships 

]sij* ] vivj = (f’+G2 - al - 2/s ~1) o), (1.16) 

[ Ei j” ] ViVj = 2/:) On, 01, zZZ WiVi 

can be obtained from (1.15). Multiplying (1.12) by vivj and utilizing (1.16). we ob- 
tain 2 191 = FlW,, @“o&F, - plSYlrJ-l (1.17) 

17, = p+G2 -- iI - 2p,, F, -= !)+G2 - A1 - “/:, p, (1 ‘- p2ip,,) 

where the subscript n denotes the normal direction. Here and henceforth, there will be 

no summation over this repeated subscript, 
The quantity ‘p characterizes the irreversible plastic deformations of a continuum. 

If the jump in this quantity on the shock is zero, then the plastic deformations are con- 

tinuous, and such a surface of strong discontinuity is called neutral. It is seen from (1.17) 
that [ cp] = 0, if p+G” = h, f Py,or when 0, = 0. If 0, = 0 and [cp] = 0, then it follows 
from (1.12) and (1.15) that ptG2 = pl,i.e., neutral shocks in the elastoplastic medium 

with hardening, just as in an elastoplastic medium [S], can be propagated only with two 
discontinuous velocities. 

It is seen from (1.17) that in the general case [rpl depends on w,. In the particular 
case sii+ - 0 the quantity [VI is independent of 0, and is expressed in terms of the 
shock velocity. This case will be investigated below. 
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Solving (1.12) for [cij* ] we obtain 

f$j*l = {tbl(i - Fs IV]) (Oj + @j% -2/*%6ij)- 

- 2 [cpl p&*+} (1 - f&o D+W + * * l 

Substituting (1.13) and (1.18) into(1.15) results in the equation 

(1.18) 

Only two among the three euqations (1.20) are independent. To simplify the subsequent 
calculations, let us introduce a local coordinate system with origin moving together with 
the surface of discontinuity 2 ; we direct the ~3 -axis along the normal to 2. Setting 
i == a (a = 1, 2), we obtain 

FI (PA - Zp.,p+G*) O~OG -j-P,pto,& +2F3(po~3Fz - p&i;*) os = 0 0.24) 

Hence ma is expressed in terms of w,.Elimination of Iw], ua and [oii*] from (1.14) 
by using (1.21), (1.17) and (1.18) results in a fourth power equation in p+G2 Omitting 
the intermediate calculations, we write the final form of this equation 

AF, ~3~~2~~s~~s~~s~~+ + 3[t:F3 (s;:;+)~ -t_ ~~~~~F3F~s~~~ - p13~3F4 (~g’i;‘)~ - 

- 6poplo3F,F2s%‘; - G~,+,cG~F~F, (s$J”)~ - k2popl~3F,F,) = 0 (1.22) 

A = poF203 - p&:+, F, = p + G’ + 3h, + 2p., 

The first root of this equation piG2 = pr corresponds to a transverse neutral wave on 

which there are no plastic deformation discontinuities and ]cp] = 0. Such waves will be 
investigated in more detail below. Equating the factor A to zero, we find another root 
for p+Ga. But such a shock cannot be realized since otherwise [cp] --t 00, which is im - 

possible. To find the two remaining roots of (1.22) let us equate the expression in the 

braces to zero, and we obtain a quadratic equation, Therefore, two plastic shocks are 
possible in a tree-dimensional elastoplastic medium. In the case of very low intensity 
shocks. the mentioned surfaces of discontinuities are propagated with the velocities 

2. Let us consider particuIar cases. 

1. Neutral Waves. The plastic deformation components are continuous on neu- 
tral shocks, which is expressed by the condition [cp] = 0. We then obtain two possible 
cases from (1.17) 
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01 = 0, p+Ga = 1, $ 2u1 

For these cases, we have from (1.18) and (1.15) respectively 

p+Gt =h o,#O; 01=0, co,=0 

Therefore, neutral waves have the properties of elastic waves. 
The state of stress in front of and behind the shock should satisfy the plasticity condi- 

tion (1.14), which reduces, by using (1.18). to 

(“is p*++g &*-)O,mO (2.1) 

This condition means that the mean stress vector on the plasticity element in the area 
element of the surface of discontinuities is orthogonal to the vector of the velocity dis- 

continuity. For very weak shocks, when squares of the jumps O( can be neglected, con- 

dition (2.1) simplifies to 

srs*+, i=O (2.2) 

The converse can also be proved: If condition (2.1) is satisfied, then the shock is neutral. 
For the proof it is sufficient to substitute (1.18) into (1.14) and to utilize condition (2.5). 
Afterwards, we obtain [cp] = 0. 

Let us examine the two simplest loadings of a rectangular plate ABCD (Figs. 2a, b). 

The plate material is elastoplastic. Then con- 

dTbz ..?I ~ dition (2.2) bet;;* _ o (2.3) 

(al D 
In case (a) the plate is stretched by certain 

stress resultants applied to the faces AB and 

Fig. 2. CD.In case (b) shear stresses are applied to 

the faces B C and A D of the plate. In both 
cases. both the elastic and plastic parts of the strain are identical at each point of the 

plate. Let us suddenly apply a #mall loading to the face AD along the normal. or to 

the face AB along it. In case (a) condition(2.3) will be satisfied for both experiments, 
and hence, a neutral shock, longitudinal in the first case and transverse in the second, 

wiIl be propagated along rbe plate. In case (b) longitudinal neutral waves originate if 

a normal impact is made on the faces AB or AD. 

2. Spherical symmetry of the state of stress on the surface of 

discontinuity. In this case the following equalltles are valid 

gP* 
11 - G2* -$% qs = SE - 8i3 P 0, O=F=O (2.4) 

The last equality from (2.4) indicates that the rho& is &rotational, It results from (1.23) 
that one weak pIastic wave degenerates into a transverse neutral wave, and the other is 
propagated at the velocity 

p+G* = i, + 2p1 - s/a l$u~o--’ (2.5) 

From the associated flow law (1.2) and (1.18) we obtain 
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3. The Case fl*;‘= 0. From (1.22) we find that one plastic wave degenerates 
into a natural longitudinal wave, and the other is propagated at the velocity 

p+c”(sg;s;; +1/L@)= (k+*/slrl) (.$gsg -l/zJP) +ys PlP2P01s~~; (2.6) 

The quantity .$‘, G can vary between the limits 0 and ka. For a certain value of this 

quantity the shock velocity vanishes, and for lesser values the right side of (2.6) will be 
negative, and this surface of strong discontinuities becomes impossible. The velocity 

of the acoustic wave for this case is found from (1.23) as 

p+G” c pi - ‘/zpiJp;lk-%$ s,p; (2.7) 

From a comparison of (2.6) and (2.7) it results that the shock (2.6) does not go over into 

the corresponding acoustic wave when the shock intensity goes to zero. 
If sp+sp+ 

a3 a3 = k2, which is possible only under the conditions s::*, = sti+ -i sg+ = 0, 

then we find p+Gk ~$a (JAI + ~a)-~ from (2.7) for the velocity of propagation of the 
equivolume wave. The existence of this wave is specified by the presence of the elastic 

properties and the hardening properties simultaneously. If the material does not posses 
at least one of the mentioned properties, then such a wave cannot be propagated. 

The second law of thermodynamics, according to which energy dissipation because 
of plastic flow is nonnegative 

eg* s$ = 2k%.p/at > 0 (2.8) 

imposes a constraint on shock propagation. 
Hence, a constraint on the discontinuity in the normal velocity component can be 

obtained. To do this, we integrate (2.8) across the transition layer from --h to +h. 

Since the integration is performed as the argument increases, the sign of the inequality 
is conserved. We then obtain [cp] Q 0 from (2.8). Substituting this inequality into (1.17) 

considering o, small, we find o,.&h+ Q 6. This inequality indicates that only one rare- 

faction shock is possible in the domain of material tension, and only a compression wave 

in the compression domain. It should be noted that the equality sign corresponds here to 

a neutral shock. 
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